ICASE REPORT

EMPIRICAL COMPARISON OF PARTITIONED AND
NON-PARTITIONED BUFFER MANAGEMENT

IN VIRTUAL MEMORY SYSTEMS

Richard S. Brice

Stephen W. Sherman

Report No. 76-9

March 25, 1976

(NASA-CR-185728) EMPIRICAL COMPARISON OF
PARTITITIONED AND NON-PARTITITIONED BUFFER
MANAGEMENT IN VIRTUAL MEMORY SYSTEMS

(ICASE) 16 p 00/60

INSTITUTE FOR COMPUTER APPLICATIONS
IN SCIENCE AND ENGINEERING
Operated by the
UNIVERSITIES SPACE RESEARCH ASSOCIATION
at

NASA'S LANGLEY RESEARCH CENTER

Hampton, Virginia

N89-71337

unclas
0224347

EMPIRICAL COMPARISON OF PARTITIONED AND
NON-PARTITIONED BUFFER MANAGEMENT

IN VIRTUAL MEMORY SYSTEMS

Richard S. Brice

Department of Civil, Mechanical and Environmental Engineering
George Washington University

Stephen W. Sherman%*

Institute for Computer Applications in Science and Engineering

ABSTRACT

Buffer pools are created and managed in data base systems in order to
reduce the total amount of accesses to secondary memory. In systems using
virtual memory the virtual buffer pools can increase secondary memory
accesses by increasing paging in the system. In this paper we compare the
performance of systems where the virtual buffer is allocated fixed amounts
of real storage and partitioned from the program to the performance of
systems where the virtual buffer and program compete for real memory. Our
analysis utilizes empirical data gathered in a multifactor experiment. The
factors we consider are memory size, virtual buffer size, virtual page re-
placement algorithm, buffer management algorithm and size of real memory
allocated to the virtual buffer.

* On leave from the University of Houston

This paper was prepared as a result of work performed under NASA Contract No.
NAS1-14101 while the second author was in residence at ICASE, NASA Langley
Research Center, Hampton, VA 23665. The work of the first author was sup-
ported by NASA Grant NGR-09-010-078

. INTRODUCTION

Computer programs that require substantial amounts of I/0 often
use part of primary memory as a buffer for data from secondary memory.
If the overhead to manage the data in primary memory is negligible
E:d the buffer consumes previously unused primary memory, then the

se of buffers improves performance due to the faster access to pri-
ry than to secondary memory. The use of a buffer in a virtual mem- -
ory system may cause a decrease in performance due to competition for
primary memory between the program and the buffer. Performance can '
also be degraded by double paging. The dynamics of double paging was
characterized by Goldberg and Hassinger [1] as the running of a paged
loperating system under a paged virtual machine monitor. In this
'paper, double paging refers to the management of buffer storage under
the control of a paged virtual memory system.

We define virtual buffers as the I/0 buffers in a program run-
ming on a virtual memory system. In two sets of experiments [2,3]
we varied a set of control factors to study their effect on the per-
formance of a system using virtual buffers. The control factors com-
mon to both experiments were virtual buffer manager, virtual buffer
size, primary memory size and paging replacement algorithm. The
first set of experiments [2] used a global page table for paging and
allowed real pages to migrate between program and buffer. The second
set of experiments [3] partitioned memory between the program and
buffer isolating the program from the buffer paging and the buffer
from the program paging. We refer to the first set of experiments

as the non-partitioned experiments and the second set as the parti-
tioned experiments. Both sets of experiments were conducted in a
controlled laboratory enviromment [4] by running a data base manage-
ment program on a dedicated system and measuring the performance as
we varied the factors. The data base management program executed a
predetermined and unvarying script.

In this paper we compare the performance of the partitioned and
non-partitioned experiments. We define performance in terms of sys-
tem I/0 (paging in the system plus I/0 accesses in the buffer) and
quantify the contributions of the components of system I/0 to the
differences in performance. We show that partitioning the real mem-
ory between buffer and program can produce slightly better perform-
ance than a non-partitioned system but usually produces performance
that is noticeably worse. The components that cause most of the dif-
ferences in performance between the partitioned and non-partitioned
systems are program paging and double paging. The program paging in
the non-partitioned system is significantly less than the program i

l

paging in the partitioned system when the virtual buffer size is
large. There is significantly less double paging in the non-parti-
tioned system than in the partitioned system when the virtual buffer
size is small.

e e SR — — 7

. ENVIRONMENT

The partitioned and non-partitioned experiments were conducted
n a PRIME 300 minicomputer. The PRIME 300 has a 16-bit word size
nd supports up to 256K words of real memory (1K=1024 words). Our
ystem has 64K words. The PRIME has virtual memory hardware which
upports up to 512 pages of 512 words each. The PRIME peripherals
f interest in these experiments consist of two moving head disks
ach having a capacity of 3 million words.

We have instrumented the PRIME's operating system with a soft-
are probe. The probe is locked in memory and cannot interact with :
he paging process. The probe records events that cause a significant
hange in the system such as the occurrence of a page fault. The |
pplication program we used in our experiments is a prototype data
ase management (DBM) system. The DBM system is run on a dedicated

chine with the software probe collecting significant events on tape '
or later analysis. The DBM system executes the same script of data
ase requests in each of the experiments. The script completely trav-
rses the data base and causes reading, insertion and deletion of data
s 1t is executed.

|
|

The DBM system organizes data in a tree structured format. Re-
uests are made in a series of primitive functions that perform ele-
entary operations on the data base. The data, names and pointers in
he data base are encoded into 40-word segments. One physical disk
ecord contains eleven data base segments. The data base used in the

periments contains 45 records. We allocate each disk record to a

eparate page in the virtual buffer to avoid physical page boundary
overlaps. The DBM virtual buffer size is chosen by the user when the
DBM system is initiated. The size of the virtual buffer can range
from 1 to 64 pages in 1 page increments.

3. PREVIOUS STUDIES

Tuel [5,6] originally studied the paging and I/0 performance of
an IBM data base system (IMS Version 2.4 system running on VS/2 Re-
lease 1.6). Tuel postulated a theoretical model of the buffer I/0
(paging in the buffer + I/0 accesses). His model and empirical re-
sults were reasonably close when only the buffer paging was consid-
ered. The early version of IMS used in the study forced the virtual
buffer to be searched at every I/0 request since a pointer array
describing the contents of the buffer was not used. Tuel concluded
that buffer I/0 increases with increasing virtual buffer size if the
buffer is allowed to page. Therefore, the least amount of buffer I/0
is achieved by reducing the virtual buffer size to fit the number of
pages available in real memory.

Our data base system and later versions of IMS now have a pointer
array describing the contents of the virtual buffer. Searching the
pointer array causes much less paging activity than the early IMS

-2~

e ¢ e ey

kechnlque of readirg the information from the individual buffers. In
previous paper by Sherman and Brice [2] we assume that searching the
ointer array generates no page faults. We develop a very simple !
heoretical model which predicts total I/0 per data base request in '
he virtual buffer as a function of virtual buffer size in pages, }
ages of real memory allocated to the virtual buffer and the number '
f pages in the data base. The model assumes that the random (RAND)
age replacement algorithm and RAND buffer manager are used and the
ata base requests are uniformly distributed.

By use of this model, we show that it is possible to increase the’
irtual buffer size and reduce the total I/0 per data base request in
he buffer for various fixed values of real memory allocated to the ‘
irtual buffer and the number of pages in the data base.

The factors we considered in the non-partitioned experiments were
emory size, virtual buffer size, page replacement algorithm and buf-
er management algorithm. Our analysis of the empirical results of .
he non-partitioned experiments.led .to the follow1ng conclusions. The
nteraction between the paging algorlthm and the buffer algorithm did
ot have a significant effect on the buffer I/0. The RAND buffer
anager and the RAND paging algorithm had lower double paging rates §

than the other managers and the SCH paging algorithm. - The cost

of system I/O (buffer I/0 + paging in the program) can decrease when
the virtual buffer size is increased but the amount is very dependent
on the amount of real memory available. The performance advantages of
virtual buffers can overcome the costs of double paging and the in-
creased program paging resulting from the use of virtual buffers.

The number of factors in our non-partitioned experiments were ex-
tended in our partitioned experiments to include five levels for the
size of the memory partition allocated to the virtual buffer., OQur
analysis of the empirical results of the partitioned experiments led
to the following conclusions. The size of the buffer partition can
cause significant variation in system I/0 due primarily to increased
program paging. There is a significant double paging effect in the |
buffer. The partitioned experiments showed that it is possible for
the use of a virtual buffer to improve performance in a partitioncd
system. The chances for improving performance are increased if: (1)
The cost of I/0 accesses are greater than the cost of paging. (2)
The RAND paging algorithm is used in the buffer partition. (3) The :
SCH paging algorithm is used in the program partition. (4) The RAND
buffer manager is chosen. (5) The virtual buffer size is signifi-
cantly larger than the buffer partition size,

i
)
!
|

4, EXPERIMENTS

The comparison in this paper is based on those factors which were
common to the partitioned and non-partitioned experiments. In hoth
sets of experiments we use the RAND and SCH (second chance [7] also

[T —— - i

known as the Multics [8] or use bit [9] algorithm) page replacement
algorithms. In the non-partitioned experiments the page replacement
algorithms do not differentiate between the program and buffer pages.
In the partitioned experiments, pages in one partition are not consid-
ered by the page replacement algorithm when a fault occurs in the '
other partition. The changes in the page replacement algorithms to
allow partitioning are the only differences in the partitioned and
non-partitioned experiments. Both sets of experiments use the FIFO
(first in - first out), RAND, SCH, and LRU (least recently used) vir-
tual buffer managers and virtual buffer sizes of 1, 5, 10, 15, and 20
pages. The total amount of real memory is set to 40K, 44K, and 48K
words. The buffer partition sizes for the partitioned experiments
are 1, 5, 10, 15, and 20 pages. E

In the non-partitioned experiments [2] a total of 240 experimentJ
were performed and analyzed. The different experiments were defined
by combination of 3 paging algorithms, 4 buffer managers, 4 real mem-
ory sizes and 5 virtual buffer sizes. In the partitioned experiments
[3] a total of 360 experiments were performed and analyzed. The dif-~
ferent experiments were defined by combinations of the 2 paging algo-
rithms, 4 buffer managers, 3 real memory sizes, 5 memory partition
sizes and virtual buffer sizes where the virtual buffer was at least
as large as the buffer partition size.

!

5. RESULTS
The complete data for the partitioned and non-partitioned experi—l
ments is available in previous papers by Sherman and Brice (2], (3]
and is not presented again in this paper. In order to omit conges-
tion we usually present figures that are representative rather than
exhaustive in terms of the number of levels of factors available. A
complete set of figures for the partitioned experiments can be con-
structed from the data in Table I, Table II, and Table III in [3].
A complete set of figures for the non-partitioned experiments can be
constructed from Table I and the Appendix in [2].

The 1/0 and paging in the experiments can be organized hierar-
chically as shown in Figure I. System I/0 and I/0 access for the
partitioned and non-partitioned experiments can be compared directly.
The other components in Figure I are influenced by the partition size
which is known in each of the partitioned experiments and varies
during each of the non-partitioned experiments.

System I/0 is shown in Figures II through IV for the non-parti-
tioned experiments and for the partitioned experiments with all the
partition sizes chosen for our experiments. The system I/0 for the
partitioned experiments typically brackets the system I/0 for the
non-partitioned experiments. The system I/0 for the non-partitioned
experiments closely approximates the best performance (least system
1/0) of the partitioned experiments. Our results are similar to the
results by Denning and Spirn [10] which show that the performance AJ

-

4

rgf a multiprogramming system with fixed partitions is generally worse
than the performance of a system with variable partitions.

P, ey

System I/0: Components are Program Paging and Buffer I/0
Program Paging is a function of CV 1, 3, 4 or 1, 4A !
Buffer I/0: Components are I/0 Accesses and Buffer Paging

I/0 Accesses is a function of CV 2, 3, 5 |

Buffer Paging: Components are Double and Reference Paging

Double Paging is a function of CV 1 through 5

Reference Paging is a function of CV 1 through 5

CONTROL VARTIABLES (CV)

1. Paging Algorithm

2, Buffer Manager

3. Virtual Buffer Size

4, Real Memory Size

4A, Partition Size :

5. Distribution of Data Base Requests

Fig. I. Hierarchy of I/O and Paging

In our partitioned experiments the same paging algorithm is used
in the program partition and the buffer partition. The performance
of each partition was analyzed separately. The SCH paging al-
gorithm typically performed significantly better than the RAND paging
algorithm in the program partition. The RAND paging algorithm per-
formed only slightly better than the SCH paging algorithm in the
buffer partition.

~5o0op =X
~ 4000 _— - —
L 7. Fzﬂgé;gf[}
SySTEM L 3900 : . =
170
= 28 x—x
100p y/

—~ |GOP

10 15~ zp

! 5
|

| { l

VIRTUAL BUFFER S/IZE

Fig. II. System I/0 for partitioned and non-partitioned (0 pages
locked) experiments using SCH page replacement algorithm,
RAND buffer manager and 40K memory.

[—————1

An analysis of the page references for the program is shown in
Figure V and VI and an analysis of the page references for the data
base is shown in Figure VI. Figure V shows the number of page faults
that would have occurred in the program partition using the LRU page
replacement algorithm for a program partition size of 40 to 95 real
pages. The partitioned experiments we conducted had a program par-
tition that ranged from 60 to 95 real pages and the page references
analysis for this range is repeated in Figure VI.

Y X

SYSTEM L2000
/0

- /000

/ 5 7] 5 e X4
| 1 1 | 1

VIR TUAL- BUFFER SIZE

Fig. III. System I/0 for partitioned and non-partitioned (O
pages locked) experiments using SCH page replacement
algorithm, RAND buffer manager and 44K memory.

Figure VI also shows the number of page faults that would have
occurred in the buffer partition using the LRU page replacement al-
gorithm and assuming the complete data base was in the virtual buffer.
The data used to construct Figures V and VI was originally gathered
to parameterize a set of simulation experiments and the method we
used to collect the data is explained in [11]. Figures V and VI il-
lustrate the potential for the program paging component of system I/0
to be dominant.

i R X—X
- | PAGES LOCKED:
SYSTEM |
1/49 lldd
- 500

VIRTUAL BUFFER SIZE

Fig. IV. System 1/0 for partitioned and non-partitioned (O
. pages locked) experiments using SCH page replacement
algorithm, RAND buffer manager and 48K memory.

In the non-partitioned experiments system I/0 usin_ the SCH paging
algorithm was significantly less than system I/0 using the RAND paging
replacement algorithm. For the partitioned experiments we noted that
system I/0 would be reduced if the RAND paging algorithm were used in
the buffer partition and the SCH paging algorithm used in the program
partition. We refer to this system as the optimal partitioned sys-
tem. The optimal partitioned system offers only a slight improvement
in the system I/0 from the partitioned system with the SCH algorithm
in each partition. A comparison of the optimal partitioned system
with the non-partitioned system using the SCH paging algorithm pro-
duces figures very similar to Figures II - IV, The performance of
the non-partitioned system closely approximates the best performance
of even the optimal partitioned system.

b

100
- BPK
Text area
- Gk
PAGE
F;’U[Ts’ - fo<
- 20
1 ! I I 1 } } —
74 78 36 o7 7Z &2 88 76

P ROGRAM meMory srz=s
Fig. V PROJECTED PROGRAM PAGING LIHTH
LRU PAGE REPLACEMENT ALGORITUM

PAGE
FANLTS
§ G RAM :
LR o oeen e
R My |
o7 68 76 89 92 187 PROCGRAM MEMURY SITE
J 8 16 29 32 “p SUFFER MEMLRY SIXE |

Fi9. VI PROJECTED PRDGRAM NAND BUFFER PAGING
WITH LRU PAGE REPLACEMENT ALGORITHM

————— . — _ s ey

Buffer I/0, a component of system I/O as shown in Figure I, con-
sists of paging in the buffer and I/0 accesses. The I/0 accesses do
not depend on the partition or the real memory available and are
exactly the same for the partitioned and non-partitioned cases. The
number of I/0 accesses is shown in Figure VII. 7Jhc RAND buffer mana-
ger has significantly fewer I/0 accesses at a virtual buffer size of
10 and 15 pages. As was shown in [2], the RAND buffer manager has
fewer I/0 accesses due to the record reference pattern which contalns
a few highly referenced records usually separated by strings of
references.

Virtual Buffer Buffer Managers .

Sizes in Records LRU SCH RAND FIFO :
1 1075 1075 1075 1075 :
5 784 791 774 - 794 5
10 684 687 559 688 ;
15 418 422 270 . 434 f
20 93 Tex98: vz 154 103

Fig. VII. Number of I/0 requests to read
records into the virtual buffer

The other component of buffer I/0 is buffer paging. Buffer
paging consists of double paging and reference paging. Double paging
occurs when the buffer manager chooses to replace the information in
a page that is not in real memory. Reference paging refers to page
faults caused by attempts to use information that is in the virtual
buffer but not in real memory. We define the double paging rate to
be the number of double page faults divided by the number of I/0
accesses. We define the reference paging rate to be the number of
reference faults divided by 1075 minus the number of I/0 accesses.
The maximum number of I/0 accesses which can occur in our experiments
is 1075.

Figures VIII and IX contain double paging rates for SCH and RAND
paging algorithms for the non-partitioned experiments. In the non-
partitioned experiments the double paging rates are increasing func-
tions of virtual buffer size and decreasing functions of real memory
size. The RAND buffer manager has a noticeably lower double paging
rate than the other buffer managers. The RAND page replacement al- |
gorithm also has a lower double paging rate than the SCH page re- :
' placement algorithm.

l

Figures X and XI contain the double paging rates for the SCH and
RAND paging algorithm for all partition sizes in the partitioned ex- .
periments. In the partitioned experiments the double paging rates
are also an increasing function of virtual buffer size and a decreas-
ing function of real memory partition size. However, the increase

- |

- .¢
— 6.9
DouBLE L 4.,

PaaGe
Rate . @.4

L 6.2

VIATUAL. BUFFcl S1tE
Fig.mﬂ:bouble P&.tsu}\g Rate for SCH

Pds:na ﬂlﬂomt\\m Usmﬁ ‘l“f K

| of Real Mmemor
due to virtual buffer size is much sharper than for the non-parti-

tioned experiments. The RAND buffer manager incurs a significantly
lower double paging rate than the other buffer managers in the par-
titioned experiments. The RAND paging algorithm also incurs a lower
double paging rate than the SCH paging algorithm. When the real
memory allocated to the buffer is equal to the virtual buffer size
the double paging rate is zero.

—~ 1.4

- 8.8

DousLéE Py
PAGE
Ante [,

VIRTUAL BUFFER SI2E
Fia.lx Oouble Pd.ging Rate €or RAND
Alsof;thm Usinﬂ 4Kk Readl Memory J

-9-

DouBLE

PAGE
ARTE

Fig. X.

DousLE
PAGE
RATE

Fig. XI.

! Our analysis of the non-partitioned experiments produced the
average number of real pages allocated to the virtual buffer.
typical averages for virtual buffer sizes 1, 5, 10, 15, 20 virtual
pages are 1, 4.5, 8.4, 10.3, 11.2 real pages.
rates of the non-partitioned experiments indicate that a considerable
portion of the I/0 accesses occurred when the virtual buffer had all

of its pages in real memory.
the double paging rates of the non-partitioned expoeriments would

have been much higher if the real memory allocated to the virtual
buffer was a;mfys less than the virtual

Some

The low double paging

The partitioned experiments show that

the virgual buffer size.
A" T ~T
Py
g i ry
- 9.8 i I}/II .,;/ f._./.
,' : : ,}I '//) ’ I-,
3 ’ b - . ! /
2.6 / 4 __-,....-~.'/,y 1/
/ v il BUFFER
! S BT mANAGER
— @. 1 / Wiersoia] =7 —_—
i: i ; f FIFO ----
A B
F / / B / RAND -+
.', r[" il & \

5 19 15
VIRTUAL BUFFER SILE

Double paging rate for the SCH paging algorithm in the
buffer partition.

-

5 g 15
VIRTUAL BUFFER SI12E

1. @ T e T
e
./ - ol ! /”’ ‘/”-
98 i I o
//-f’ i 2
; 7 4 - BurfFeER
— 2. R / 4 ,II
’ !f /;/’) K / MANAGER
3] ! lf . ol
/ i / 7 LRU ——-
|_¢L / fl. / /'[’ RAND.......

Double paging rate for the RAND paging algorithm in

the buffer partition.

i

-10-

1}

In the non-partitioned experiments we calculated the mean and
standard deviation for the number of program faults which occurred
between successive buffer faults. The means were a decreasing func-
tion of virtual buffer size and the standard deviations were typical-
ly larger than the mean. A set of density functions for program
faults occurring between successive buffer faults is shown in Figure
XII for the five virtual buffer sizes. The small medians of the
density functions indicate that the real memory requirements of the
virtual buffer occur in bursts. We observed that the data base man-
ager often requests strings of records in order to satisfy some par-
ticular data base request. The data is then processed by the pro-
gram, A string of record requests causes double page faults to occur
until the entire virtual buffer is in real memory. Once the virtual
buffer is in real memory, any remaining requests in the string do
not cause double page faults. As the program processes the data
records, the program pages tend to replace some of the real pages
assigned to the virtual buffer. In the non-partitioned experiments
the double paging rate increases with increasing buffer size because
for large virtual buffers the complete virtual buffer is rarely in
real memory. The complete virtual buffer is rarely in memory due to
competition for real memory by the program and the buffer and also
due to the decrease in length of the string of requests relative to
the buffer size.

504
qo0 |- VIRTUAL BUFFER si%E
NUMBER S
OF 3es 9 —==---
OCCURRENCES 1§ — —. .
20p p —
I ALMOST ALwAYS £QuAL 2FRo

/%6 -

PROGRAM FAULTS BETWEEN RUFFER FAULTS

Fig. XII. Density functions of program faults between successive
buffer faults for the SCH paging algorithm and SCH
buffer manager using 36K of memory

-11-

The last component of buffer I/0 is reference paging. The
reference paging rates are very similar in the partitioned and non-
partitioned experiments. The reference paging rates are an increas-
ing function of virtual buffer size and a decreasing function of real
memory size, i

As shown in Figure I, the other component of system I/0 is pro-
gram paging. In the non-partitioned and partitioned experiments,
program paging caused a large percentage of the paging in the system.
In both sets of experiments the SCH paging algorithm clearly produced
fewer page faults than the RAND paging algorithm. In the partitioned
experiments there is no interaction between paging in the buffer and
paging in the program. In the non-partitioned experiments, real
pages were free to migrate between buffer space and program space and
the migration is characterized in [2]. We define program paging in
the non-partitioned experiments to consist of all page replacements
caused by a fault in the program space. Figure XIII is a comparison
of the program paging in the partitioned experiments and the non-
partitioned experiments. The program partition size in the non-
partitioned experiments is calculated by subtracting the average num-
ber of real pages allocated to the virtual buffer from the real memory
size, As the real memory available to the program decreases, the pro-
gram paging in the non-partitioned experiments has significantly
i fewer page faults than the program paging in the partitioned experi-
Ements. The lower program paging in the non-partitioned experiments
ireflects the alternating need for memory between the program and the
buffer and the freedom of the pages in real memory to migrate between
the program space and the buffer space.

- Sp o ’
| 1000 PARTITIONED |
NON-PARTITIONED -+ -+ -+ -+ i
PAGE soor
FAULTS
202 TTeeRIIN
~ a2
i 1 | 1 |
©® 65 7¢ 75 84
REAL MEMORY ALLOCATED TO PRDORAM

Fig. XIII. Program paging for the partitioned and non-partitioned ,
experiments. |

~12-

6. CONCLUSIONS

The performance of system I/0 when the program space is not
partitioned from the buffer space is usually better than the per-
formance of system I/O in a partitioned system. We have shown that
the system I/0 in a partitioned system can be slightly lower than a
non-partitioned system with a judicious choice of partition size al-
though a poor choice of partition size will cause the system I1/0 in
a partitioned system to be significantly higher. For a given vir-
tual buffer size, the average number of real pages allocated to the
virtual buffer in the non-partitioned experiments is a poor predic-
tion of a buffer partition size to minimize system I/0.

The superior performance of a non-partitioned system was due to
its ability to allocate real memory to the program space and buffer
space as they alternated their requirements for memory. The alloca-
tion of real memory as required produces less program paging and a

is large, the program paging in the non-partitioned system is much
lower than the program paging in the partitioned system. As the
virtual buffer size decreases, the difference in program paging per-
formance decreases. When the virtual buffer size is small, the
double paging rate in the non-partitioned system is much lower than
the double paging rate in the partitioned system. As the virtual

but the corresponding decrease in I/0 access for large buffers re-
duces the significance of the double paging rate.

Even though the performance of a partitioned system can be im-
proved by using a different paging algorithm for the program parti-
tion and buffer partition, the gain in performance is not as signif-
icant as the performance improvement that was gained by not having
a partition.

7. REFERENCES

1. Goldberg, R., and Hassinger, R., 'The Double Paging Anomaly’,

2. Sherman, S. W., and Brice, R. S., 'Performance of a Data Base
Manager in a Virtual Memory System', to be published in ACM
Transactions on Data Base Systems. -

3. Brice, R. S., and Sherman, S. W., 'Performance of a Data Base
Management System with Partially Locked Virtual Buffers', ICASE
Report 76-6, Langley Research Center, Hampton, VA, March 1976.

4. Schwetman, H. D. and Browne, J. C., 'An Experimental Study of
Computer System Performance', Proc. Natiomal ACM Confercnce,
| _._-Boston, Mass.,. August 1972, pp. 693-703,_

-13-

Proc. 1974 National Computer Conference, Chicago, May 6-8, 1974.

lower double paging rate in the buffer. When:-the virtual buffer size

buffer size increases, the difference in double paging rate decreases

i
|

,

5. Tuel, W. G., 'An Analysis of Buffer Paging in Virtual Storage
Systems', IBM Report RJ 1421, July 1974.
6. Tuel, W. G., ‘An Analysis of Buffer Paging in Virtual Storage

Systems', Proc. Third Texas Conference on Computing Systems,
Austin, Texas, November 1974.

7. Hoare, C. A. R., and McKeag, R. M., 'A Survey of Store Manage-
ment Techniques', A. P. I. C. Studies in Data Processing, No. 9,
Academic Press, 1972.

8. Corbato, F. J., 'A Paging Experiment with the Multics System',
In Honor of P. M, Morse, M.I.T. Press, Cambridge, Mass., 1969,
pp. 217-228,

9. Grit, D. H., and Kain, R. Y., 'An Analysis-of a Use Bit Page
Replacement Algorithm', Proceedings ACM Annual Conference, 1975.

10. Spirn, J. R., and Denning, P. J. 'Experiments with Program
Locality', Proc. FJCC, 1972, pp. 611-621.

11. Sherman, S. W., and Brice, R. S., 'I/O Buffer Performance in a

Virtual Memory System', Proceedings Symposium on the Simulation
of Computer Systems, Boulder Colo., August 1976.

Acknowledgement

'We wish to thank Professor Jim Browne for suggesting this area of
iresearch and Professors Browne and Arden for their comments on our
iinitial research. We also wish to acknowledge the technical sup-
port of Mary 0. Smith

-14~

